/* Copyright (C) 1997,1998,1999,2000,2001 Franz Josef Och mkcls - a program for making word classes . This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "RRTOptimization.h" #include "ProblemTest.h" double RRTOptimization::defaultAnnRate=0.6; double RRTOptimization::defaultMultiple=2.0; RRTOptimization::RRTOptimization(Problem &p,double t,double dt,int m) : IterOptimization(p,m),deviation(t),deltaDeviation(dt) { assert(deviation>=0); } RRTOptimization:: RRTOptimization(Problem &p,int m) : IterOptimization(p,m),deviation(-1),deltaDeviation(0) { } RRTOptimization::RRTOptimization(RRTOptimization &o) : IterOptimization(o) { deviation = o.deviation; deltaDeviation= o.deltaDeviation; record = o.record; } void RRTOptimization::zInitialize() { IterOptimization::zInitialize(); if( deviation<0 ) { int n; StatVar &v=problem.deviationStatVar(*this,ANZ_VERSCHLECHTERUNGEN); if( maxStep>0 ) n=(int)(maxStep*4.0/5.0); else maxStep=n=(int)(problem.expectedNumberOfIterations()*defaultMultiple); deviation = v.quantil(defaultAnnRate); deltaDeviation = deviation/(float)n; if( verboseMode>0 ) cout << "#Algorithm: Record-To-Record-Travel: (anfAnnRate=" << defaultAnnRate << ",T=" << deviation << ",deltaT=" << deltaDeviation << ")\n"; curStep=0; endFlag=0; delete &v; problem.initialize(); IterOptimization::zInitialize(); } record=problem.value(); assert(deviation>=0); } short RRTOptimization::end() { return ( endFlag>0 && deviation==0.0 ); } void RRTOptimization::abkuehlen() { if( deviation>=0 ) { deviation -= deltaDeviation; if(deviation<0) deviation=0; } } short RRTOptimization::accept(double delta) { if( deviation<0 ) return 1; else { if( delta + curValue - deviation < record ) { if( delta + curValue < record ) record = delta+curValue; return 1; } else return 0; } } void RRTOptimization::makeGraphOutput() { IterOptimization::makeGraphOutput(); *GraphOutput << deviation; } double RRTOptimization::optimizeValue(Problem &p,int proParameter,int numParameter,int typ, int optimierungsschritte,int print) { switch(typ) { case 1: { double bestPar=-1,best=1e100; if( print ) cout << "#RRT-optimizeValues: Quantil: " << numParameter << endl; for(int i=0;i<=numParameter;i++) { StatVar end,laufzeit,init; double now; if(i==0) defaultAnnRate=0.2; else defaultAnnRate = 0.3+(float)(0.6*i)/numParameter; solveProblem(0,p,proParameter,optimierungsschritte,RRT_OPT,now, end,laufzeit,init); if( best>now ) { best=now; bestPar=defaultAnnRate; } if( print ) { cout << defaultAnnRate << " "; cout << end.getMean() << " " << end.quantil(0.2) << " " << end.quantil(0.79) << " " << laufzeit.getMean() << " " << end.quantil(0.0) << " " << end.getSigma() << " " << end.getSigmaSmaller() << " " << end.getSigmaBigger() << " " << now << endl; } } if( print ) cout << "#Parameter Mittelwert 0.2-Quantil 0.8-Quantil Laufzeit " "Bester Sigma SigmaSmaller SigmaBigger\n"; defaultAnnRate=0.8; return bestPar; } break; case 10: { double i; double bestPar=-1,best=1e100; StatVar end,laufzeit,init; if( print ) cout << "#RRT-optimizeValues: defaultMultiple" << 8 << endl; for(i=0.5;i<=10;i+=1.5) { double now; defaultMultiple = i; solveProblem(0,p,proParameter,optimierungsschritte,RRT_OPT,now, end,laufzeit,init); if( best>now ) { best=now; bestPar=defaultMultiple; } if( print ) { cout << defaultMultiple << " "; cout << end.getMean() << " " << end.quantil(0.2) << " " << end.quantil(0.79) << " " << laufzeit.getMean() << " " << end.quantil(0.0) << " " << end.getSigma() << " " << end.getSigmaSmaller() << " " << end.getSigmaBigger() << " " << now << endl; } } if( print ) cout << "#Parameter Mittelwert 0.2-Quantil 0.8-Quantil Laufzeit " "Bester Sigma SigmaSmaller SigmaBigger\n"; defaultMultiple=2.0; return bestPar; } break; default: cerr << "Error: wrong parameter-type in RRTOptimization::optimizeValue (" << typ << ")\n"; exit(1); } return 1e100; }