| waldtest.systemfit {systemfit} | R Documentation |
Wald-test for linear parameter restrictions in equation systems.
waldtest.systemfit( object, R.restr,
q.restr = rep( 0, nrow( R.restr ) ) )
## S3 method for class 'waldtest.systemfit':
print( x, digits = 4, ... )
object |
an object of type systemfit. |
R.restr |
j x k matrix to impose linear
restrictions on the parameters by R.restr * b = q.restr
(j = number of restrictions, k = number of all parameters,
b = vector of all parameters). |
q.restr |
an optional vector with j elements to impose linear
restrictions (see R.restr); default is a vector
that contains only zeros. |
x |
an object of class waldtest.systemfit. |
digits |
number of digits to print. |
... |
currently not used. |
The Wald-statistic for sytems of equations is
W = ( R hat{b} - q )' ( R widehat{Cov} [ hat{b} ] R' )^{-1} ( R hat{b} - q )
Asymptotically, W has a chi^2 distribution with j degrees of freedom under the null hypothesis (Greene, 2003, p. 347).
waldtest.systemfit returns a list of class waldtest.systemfit
that includes following objects:
statistic |
the empirical Wald statistic. |
p.value |
the p-value of the Wald-test. |
nRestr |
number of restrictions (j, degrees of freedom). |
Arne Henningsen ahenningsen@agric-econ.uni-kiel.de
Greene, W. H. (2003) Econometric Analysis, Fifth Edition, Prentice Hall.
systemfit, ftest.systemfit,
lrtest.systemfit
data( "Kmenta" )
eqDemand <- consump ~ price + income
eqSupply <- consump ~ price + farmPrice + trend
system <- list( demand = eqDemand, supply = eqSupply )
## unconstrained SUR estimation
fitsur <- systemfit( "SUR", system, data=Kmenta )
# create restriction matrix to test whether \eqn{beta_2 = \beta_6}
R1 <- matrix( 0, nrow = 1, ncol = 7 )
R1[ 1, 2 ] <- 1
R1[ 1, 6 ] <- -1
## perform Wald-test
waldTest1 <- waldtest.systemfit( fitsur, R1 )
print( waldTest1 ) # rejected
# create restriction matrix to test whether \eqn{beta_2 = - \beta_6}
R2 <- matrix( 0, nrow = 1, ncol = 7 )
R2[ 1, 2 ] <- 1
R2[ 1, 6 ] <- 1
## perform Wald-test
waldTest2 <- waldtest.systemfit( fitsur, R2 )
print( waldTest2 ) # accepted