sm-internal {sm} | R Documentation |
Internal sm
functions
addplot(d, f, theta, phi) attach.frame(data, name, ...) box1.(theta = pi/6, phi = pi/6, sc, col = par("col"), axes.lim = sc) box2.(theta = pi/6, phi = pi/6, sc, labels = c("", "", ""), col = par("col"), cex = 9/10, axes.lim = sc) britmap() change(th, ph) circle(r) coord2.(x, y, z, theta, phi, sc) cv(x, h, ...) hidplot(invis, theta, phi) incphi(ph, inc) inctheta(th, inc) isInteger(x) isMatrix(x) normdens.band(x, h, weights = rep(1, length(x)), options = list()) np.contour.plot.3d.(coord, data = matrix(), shadow = TRUE, gridsize = 20, numpts = 3, xmin = NA, xmax = NA, ymin = NA, ymax = NA, zmin = NA, zmax = NA, xlab = NA, ylab = NA, zlab = NA, theta = pi/4, phi = pi/4, colour = FALSE, title.colour = 3, label.colour = 3, axes.colour = 6, plot.colour = "blue", shadow.colour = "cyan", cex = NA) p.quad.moment(A, Sigma, tobs, ndevs) plot.regression(x, y, design.mat, h, r, model, weights, rawdata = list(), options = list(), ...) plot2(latitude2, longitude2, theta, phi) plot2d(d, f, theta, phi) replace.na(List, comp, value) sj(x, h) sm.check.data(x, y = NA, weights = NA, group = NA, ...) sm.density.1d(x, h = hnorm(x, weights), model = "none", weights, rawdata = list(x = x), options = list()) sm.density.2d(X, h = hnorm(X, weights), weights = rep(1, length(x)), rawdata = list(), options = list()) sm.density.3d(data, h = hnorm(data), contour = 75, shadow = TRUE, colour = TRUE, title.colour = 3, label.colour = 1, axes.colour = 1, plot.colour = 1, shadow.colour = 2, plt = TRUE, cex = NA, maxpoly = 10000, options = list()) sm.density.eval.1d(x, h, weights = rep(1, n), options = list()) sm.density.eval.2d(x, y, h, xnew, ynew, eval.type = "points", weights = rep(1, n), options = list()) sm.density.positive.1d(x, h, weights, options = list()) sm.density.positive.2d(X, h = c(hnorm(log(X[, 1] + delta[1]), weights), hnorm(log(X[,2] + delta[2]), weights)), eval.type = "points", weights = rep(1, nrow(X)), options = list()) sm.density.positive.grid(X, h = c(hnorm(log(X[, 1] + delta[1])), hnorm(log(X[, 2] + delta[2]))), weights=NA, options=list()) sm.glm(x, y, family, h, eval.points, start, offset, options=list()) sm.imageplot(x, y, h, weights, rawdata, options = list()) sm.persplot(x, y, h = hnorm(cbind(x, y), weights), weights, rawdata = list(), options = list()) sm.regression.1d(x, y, h, design.mat = NA, model = "none", weights = rep(1, length(x)), rawdata, options = list()) sm.regression.2d(x, y, h, model = "none", weights = rep(1, n), rawdata, options = list()) sm.regression.eval.1d(x, y, design.mat, h, model = "none", weights = rep(1, length(x)), rawdata, options = list()) sm.regression.eval.2d (x, y, h, model, eval.points, hull = TRUE, weights, options = list()) sm.regression.test(x, y, design.mat = NA, h, model = "no.effect", weights = rep(1,length(y)), rawdata, options = list()) sm.sigma(x, y, rawdata, weights = rep(1, length(y)), diff.ord = 2) sm.sigweight(x, weights) sm.sliceplot(x, y, h, weights, rawdata = list(), options = list()) sm.weight(x, eval.points, h, cross = FALSE, weights = rep(1, n), options) sm.weight2(x, eval.points, h, cross = FALSE, weights = rep(1, nrow(x)), options = list()) smplot.density(x, h, weights = rep(1, length(x)), rawdata = list(x = x), options = list()) wmean(x, w) wvar(x, w)
These are not to be called by the user.