sm-internal {sm}R Documentation

Internal sm functions

Description

Internal sm functions

Usage

addplot(d, f, theta, phi)
attach.frame(data, name, ...)
box1.(theta = pi/6, phi = pi/6, sc, col = par("col"), axes.lim = sc)
box2.(theta = pi/6, phi = pi/6, sc, labels = c("", "", ""),
      col = par("col"), cex = 9/10, axes.lim = sc)
britmap()
change(th, ph)
circle(r)
coord2.(x, y, z, theta, phi, sc)
cv(x, h, ...)
hidplot(invis, theta, phi)
incphi(ph, inc)
inctheta(th, inc)
isInteger(x)
isMatrix(x)
normdens.band(x, h, weights = rep(1, length(x)), options = list())
np.contour.plot.3d.(coord, data = matrix(), shadow = TRUE, gridsize = 20,
    numpts = 3, xmin = NA, xmax = NA, ymin = NA, ymax = NA, zmin = NA,
    zmax = NA, xlab = NA, ylab = NA, zlab = NA, theta = pi/4,
    phi = pi/4, colour = FALSE, title.colour = 3, label.colour = 3,
    axes.colour = 6, plot.colour = "blue", shadow.colour = "cyan",
    cex = NA)
p.quad.moment(A, Sigma, tobs, ndevs)
plot.regression(x, y, design.mat, h, r, model, weights, rawdata = list(),
    options = list(), ...)
plot2(latitude2, longitude2, theta, phi)
plot2d(d, f, theta, phi)
replace.na(List, comp, value)
sj(x, h)
sm.check.data(x, y = NA, weights = NA, group = NA, ...)
sm.density.1d(x, h = hnorm(x, weights), model = "none", weights,
   rawdata = list(x = x), options = list())
sm.density.2d(X, h = hnorm(X, weights), weights = rep(1, length(x)),
   rawdata = list(), options = list())
sm.density.3d(data, h = hnorm(data), contour = 75, shadow = TRUE,
   colour = TRUE,  title.colour = 3, label.colour = 1, axes.colour = 1,
   plot.colour = 1, shadow.colour = 2, plt = TRUE, cex = NA,
   maxpoly = 10000, options = list())
sm.density.eval.1d(x, h, weights = rep(1, n), options = list())
sm.density.eval.2d(x, y, h, xnew, ynew, eval.type = "points",
   weights = rep(1, n), options = list())
sm.density.positive.1d(x, h, weights, options = list())
sm.density.positive.2d(X, h = c(hnorm(log(X[, 1] + delta[1]), weights),
   hnorm(log(X[,2] + delta[2]), weights)), eval.type = "points",
   weights = rep(1, nrow(X)), options = list())
sm.density.positive.grid(X, h = c(hnorm(log(X[, 1] + delta[1])),
   hnorm(log(X[, 2] + delta[2]))), weights=NA, options=list())
sm.glm(x, y, family, h, eval.points, start, offset, options=list())
sm.imageplot(x, y, h, weights, rawdata, options = list())
sm.persplot(x, y, h = hnorm(cbind(x, y), weights), weights, rawdata = list(),
    options = list())
sm.regression.1d(x, y, h, design.mat = NA, model = "none",
    weights = rep(1, length(x)), rawdata, options = list())
sm.regression.2d(x, y, h, model = "none", weights = rep(1, n), rawdata,
    options = list())
sm.regression.eval.1d(x, y, design.mat, h, model = "none",
    weights = rep(1, length(x)), rawdata, options = list())
sm.regression.eval.2d (x, y, h, model, eval.points, hull = TRUE,
    weights, options = list())
sm.regression.test(x, y, design.mat = NA, h, model = "no.effect",
    weights = rep(1,length(y)), rawdata, options = list())
sm.sigma(x, y, rawdata, weights = rep(1, length(y)), diff.ord = 2)
sm.sigweight(x, weights)
sm.sliceplot(x, y, h, weights, rawdata = list(), options = list())
sm.weight(x, eval.points, h, cross = FALSE, weights = rep(1, n), options)
sm.weight2(x, eval.points, h, cross = FALSE, weights = rep(1, nrow(x)),
    options = list())
smplot.density(x, h, weights = rep(1, length(x)), rawdata = list(x = x),
    options = list())
wmean(x, w)
wvar(x, w)

Details

These are not to be called by the user.


[Package sm version 2.1-0 Index]