tsls {sem} | R Documentation |
Fits an equation in a structural-equation model by two-stage least squares. This is equivalent to direct instrumental-variables estimation when the number of instruments is equal to the number of predictors.
tsls(y, ...) ## S3 method for class 'formula': tsls(formula, instruments, data, subset, na.action, contrasts=NULL, ...) ## Default S3 method: tsls(y, X, Z, names=NULL, ...) ## S3 method for class 'tsls': print(x, ...) ## S3 method for class 'tsls': summary(object, digits=4, ...) ## S3 method for class 'tsls': anova(object, model.2, s2, dfe, ...) ## S3 method for class 'tsls': fitted(object, ...) ## S3 method for class 'tsls': residuals(object, ...) ## S3 method for class 'tsls': coef(object, ...) ## S3 method for class 'tsls': vcov(object, ...)
formula |
model formula for structural equation to be estimated; a regression constant is implied if not explicitly omitted. |
instruments |
one-sided model formula specifying instrumental variables. |
data |
an optional data frame containing the variables in the model. By default the variables are taken from the environment from which tsls is called. |
subset |
an optional vector specifying a subset of observations to be used in fitting the model. |
na.action |
a function that indicates what should happen when the
data contain NA s.
The default is set by the na.action option. |
contrasts |
an optional list. See the contrasts.arg of
model.matrix.default . |
y |
Response-variable vector. |
X |
Matrix of predictors, including a constant (if one is in the model). |
Z |
Matrix of instrumental variables, including a constant (if one is in the model). |
names |
optional character vector of names for the columns of the X matrix. |
x, object, model.2 |
objects of class tsls returned by tsls.formula ,
containing nested models
to be compared by an incremental F-test. One model should be nested in the other; the
order of models is immaterial. |
s2 |
an optional estimate of error variance for the denominator of the F-test. If missing, the error-variance estimate is taken from the larger model. |
dfe |
optional error degrees of freedom, to be specified when an estimate of error variance is given. |
digits |
number of digits for summary output. |
... |
arguments to be passed down. |
tsls.formula
returns an object of class tsls
, with the following components:
n |
number of observations. |
p |
number of parameters. |
coefficients |
parameter estimates. |
V |
estimated covariance matrix of coefficients. |
s |
residual standard error. |
residuals |
vector of residuals. |
response |
vector of response values. |
X |
model matrix. |
Z |
instrumental-variables matrix. |
response.name |
name of response variable, or expression evaluating to response. |
formula |
model formula. |
instruments |
one-sided formula for instrumental variables. |
John Fox jfox@mcmaster.ca
Fox, J. (1979) Simultaneous equation models and two-stage least-squares. In Schuessler, K. F. (ed.) Sociological Methodology 1979, Jossey-Bass.
Greene, W. H. (1993) Econometric Analysis, Second Edition, Macmillan.
data(Kmenta) summary(tsls(Q ~ P + D, ~ D + F + A, data=Kmenta)) # demand equation ## 2SLS Estimates ## ## Model Formula: Q ~ P + D ## ## Instruments: ~D + F + A ## ## Residuals: ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -3.43e+00 -1.24e+00 -1.89e-01 -2.49e-13 1.58e+00 2.49e+00 ## ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 94.6333 7.92084 11.947 1.076e-09 ## P -0.2436 0.09648 -2.524 2.183e-02 ## D 0.3140 0.04694 6.689 3.811e-06 ## ## Residual standard error: 1.9663 on 17 degrees of freedom summary(tsls(Q ~ P + F + A, ~ D + F + A, data=Kmenta)) # supply equation ## 2SLS Estimates ## ## Model Formula: Q ~ P + F + A ## ## Instruments: ~D + F + A ## ## Residuals: ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -4.87e+00 -1.26e+00 6.42e-01 -5.64e-12 1.47e+00 3.49e+00 ## ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 49.5324 12.01053 4.124 7.954e-04 ## P 0.2401 0.09993 2.402 2.878e-02 ## F 0.2556 0.04725 5.410 5.785e-05 ## A 0.2529 0.09966 2.538 2.193e-02 ## ## Residual standard error: 2.4576 on 16 degrees of freedom anova(tsls(Q ~ P + F + A, ~ D + F + A, data=Kmenta), tsls(Q ~ 1, ~ D + F + A, data=Kmenta)) ## Analysis of Variance ## ## Model 1: Q ~ P + F + A Instruments: ~D + F + A ## Model 2: Q ~ 1 Instruments: ~D + F + A ## ## Res.Df RSS Df Sum of Sq F Pr(>F) ## Model 1 16 96.633 ## Model 2 19 268.114 3 171.481 4.0507 0.02553