oc.curves {qcc} | R Documentation |
Draws the operating characteristic curves for a `qcc' object.
oc.curves(object, ...) oc.curves.xbar(object, n, c = seq(0, 5, length=101), nsigmas = object$nsigmas, identify=FALSE, restore.par=TRUE) oc.curves.p(object, nsigmas = object$nsigmas, identify = FALSE, restore.par=TRUE) oc.curves.c(object, nsigmas = object$nsigmas, identify = FALSE, restore.par=TRUE)
object |
an object of class `qcc'. |
identify |
logical specifying whether to intercatively identify points on the plot (see help for identify ). |
n |
a vector of values specifying the sample sizes for which to draw the OC curves. |
c |
a vector of values specifying the multipliers for sigma in case of continuous variable. |
nsigmas |
a numeric value specifying th number of sigmas to use for computing control limits. |
restore.par |
a logical value indicating whether the previous par settings must be restored. If you need to add points, lines, etc. to a chart set this to FALSE . |
... |
An operating characteristic curve graphically provides information about the probability of not detecting a shift in the process. oc.curves
is a generic function which calls the proper function depending on the type of `qcc' object. Further arguments provided through ... are passed to the specific function depending on the type of chart.
The function invisibly returns a matrix or a vector of beta values, the probability of type II error.
Luca Scrucca luca@stat.unipg.it
Montgomery, D.C. (2000) Introduction to Statistical Quality Control, 4th ed. New York: John Wiley & Sons.
Wetherill, G.B. and Brown, D.W. (1991) Statistical Process Control. New York: Chapman & Hall.
data(pistonrings) attach(pistonrings) diameter <- qcc.groups(diameter, sample) beta <- oc.curves.xbar(qcc(diameter, type="xbar", nsigmas=3, plot=FALSE)) print(round(beta, digits=4)) # or to identify points on the plot use ## Not run: oc.curves.xbar(qcc(diameter, type="xbar", nsigmas=3, plot=FALSE), identify=TRUE) detach(pistonrings) data(orangejuice) attach(orangejuice) beta <- oc.curves(qcc(D[trial], sizes=size[trial], type="p", plot=FALSE)) print(round(beta, digits=4)) # or to identify points on the plot use ## Not run: oc.curves(qcc(D[trial], sizes=size[trial], type="p", plot=FALSE), identify=TRUE) detach(orangejuice) data(circuit) attach(circuit) q <- qcc(x[trial], sizes=size[trial], type="c", plot=FALSE) beta <- oc.curves(q) print(round(beta, digits=4)) # or to identify points on the plot use ## Not run: oc.curves(qcc(x[trial], sizes=size[trial], type="c", plot=FALSE), identify=TRUE) detach(circuit)