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1 Introduction

Consider a parametric model M(Y, β) with observations Y and a p-dimensional
vector of parameters β. This model could be some kind of regression model
where Y = (y, x) can be split up into a dependent variable y and regressors x.
An example is a linear regression model y = x>β or a generalized linear model
(GLM) or a survival regression.

Our primary target is simultaneous inference about general linear hypotheses
on β. More specifically, the global null hypothesis is formulated in terms of linear
functions of the parameter vector β ∈ Rp [Searle, 1971]:

H0 : Kβ = m

where K is a k×p matrix with each row corresponding to one partial hypothesis.
However, we are not only interested in the global hypothesis H0 but in all partial
hypotheses defined by the rows Kj , j = 1, . . . , k, of K and the elements of
m = (m1, . . . ,mk):

Hj
0 : Kjβ = mj with global hypothesis H0 =

k⋂
j=1

Hj
0

We only consider simultaneous inference procedures, both tests and confidence
intervals, which control the family-wise error rate (FWE), that is the probability
of incorrectly rejecting at least one hypothesis Hj

0 , j = 1, . . . , k.

1.1 Parameter Estimates

We assume we are provided with an estimate β̂ of β based on observations
Y1, . . . , Yn. The estimate β̂ follows a joint multivariate normal distribution with
mean β and covariance matrix Σ, either exactly or asymptotically. Moreover,
we assume that an estimate V(β̂) of the covariance matrix Σ is available. It
then holds that the linear combination Kβ̂ follows a joint normal distribution
N (Kβ,KΣK>), either exactly or asymptoticall.y
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1.2 Simultaneous Tests and Confidence Intervals

Under the conditions of the global hypothesis H0 it holds that

Kβ̂ −m ∼ N (0,KΣK>),

either exactly or asymptotically. Let σ = diag
(
KV(β̂)K>

)
denote the esti-

mated standard deviations for all elements of Kβ̂. Then, all inference procedures
are based on the vector of all k standardized test statistics

z = (z1, . . . , zk) = σ−
1
2 (Kβ̂ −m).

The correlation matrix of the elements of z is

V(z) = σ−
1
2 KV(β̂)K>

(
σ−

1
2

)>
.

Under H0 is holds that z → N (0, V(z)). When β̂ follows a normal distribtion
exactly, the z statistics follow a multivariate t distribution with n − Rank(K)
degrees of freedom and correlation matrix V(z)).

A simultaneous inference procedure is based on the maximum of the absolute
values of the test statistics: max |z|. Adjusted p values, controlling the family-
wise error rate, for each linear hypothesis Hj

0 are pj = PH0(max(|z|) ≥ |zj |).
Efficient algorithms for the evalutation of both multivariate distributions are
nowadays available [Genz, 1992, Genz and Bretz, 1999, 2002].

Example: Simple Linear Model. Consider a simple univariate linear model
regressing the distance to stop on speed for 50 cars:

> lm.cars <- lm(dist ~ speed, data = cars)

> summary(lm.cars)

Call:
lm(formula = dist ~ speed, data = cars)

Residuals:
Min 1Q Median 3Q Max

-29.07 -9.53 -2.27 9.21 43.20

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.579 6.758 -2.60 0.012 *
speed 3.932 0.416 9.46 1.5e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 15.4 on 48 degrees of freedom
Multiple R-Squared: 0.651, Adjusted R-squared: 0.644
F-statistic: 89.6 on 1 and 48 DF, p-value: 1.49e-12
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The estimates of the regression coefficients β and their covariance matrix can
be extracted from the fitted model via:

> betahat <- coef(lm.cars)

> Vbetahat <- vcov(lm.cars)

At first, we are interested in the hypothesis β1 = 0 and β2 = 0. This is equiva-
lent to the linear hypothesis Kβ = 0 where K = diag(2), i.e.,

> K <- diag(2)

> Sigma <- diag(1/sqrt(diag(K %*% Vbetahat %*% t(K))))

> z <- Sigma %*% K %*% betahat

> Cor <- Sigma %*% (K %*% Vbetahat %*% t(K)) %*% t(Sigma)

Note that z = (−2.6011, 9.464) is equal to the t statistics. The multiplicity-
adjusted p values can now be computed by means of the multivariate t distri-
bution utilizing the pmvt function available in package mvtnorm:

> library("mvtnorm")

> df.cars <- nrow(cars) - length(betahat)

> sapply(abs(z), function(x) 1 - pmvt(-rep(x, 2), rep(x,

+ 2), corr = Cor, df = df.cars))

[1] 1.661e-02 2.458e-12

Note that the p value of the global test is the minimum p value of the partial
tests.

The computations above can be performed much more conveniently using the
functionality implemented in package multcomp. The function glht just takes
a fitted model and a matrix defining the linear functions, and thus hypotheses,
to be tested:

> library("multcomp")

> cars.ht <- glht(lm.cars, linfct = K)

> summary(cars.ht)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = dist ~ speed, data = cars)

Linear Hypotheses:
Estimate Std. Error t value p value

(Intercept) == 0 -17.579 6.758 -2.60 0.017 *
speed == 0 3.932 0.416 9.46 <1e-10 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Adjusted p values reported)

Simultaneous confidence intervals corresponding to this multiple testing proce-
dure are available via
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> confint(cars.ht)

Simultaneous Confidence Intervals for General Linear Hypotheses

Fit: lm(formula = dist ~ speed, data = cars)

Estimated Quantile = 2.13

Linear Hypotheses:
Estimate lwr upr

(Intercept) == 0 -17.579 -31.977 -3.181
speed == 0 3.932 3.047 4.818

95% family-wise confidence level

The application of the framework isn’t limited to linear models, nonlinear
least-squares estimates can be tested as well. Consider constructing simultane-
ous confidence intervals for the model parameters (example from the manual
page of nls):

> DNase1 <- subset(DNase, Run == 1)

> fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym,

+ xmid, scal), DNase1)

> K <- diag(3)

> rownames(K) <- names(coef(fm1DNase1))

> confint(glht(fm1DNase1, linfct = K))

Simultaneous Confidence Intervals for General Linear Hypotheses

Fit: nls(formula = density ~ SSlogis(log(conc), Asym, xmid, scal),
data = DNase1, algorithm = "default", control = list(maxiter = 50,

tol = 1e-05, minFactor = 0.0009765625, printEval = FALSE,
warnOnly = FALSE), trace = FALSE)

Estimated Quantile = 2.138

Linear Hypotheses:
Estimate lwr upr

Asym == 0 2.345 2.178 2.512
xmid == 0 1.483 1.309 1.657
scal == 0 1.041 0.972 1.110

95% family-wise confidence level

which is not totally different from univariate confidence intervals

> confint(fm1DNase1)
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Figure 1: cars data: Regression line with confidence bands (dashed) and inter-
vals (dotted).

2.5% 97.5%
Asym 2.1935 2.539
xmid 1.3215 1.679
scal 0.9743 1.115

because the parameter estimates are highly correlated

> cov2cor(vcov(fm1DNase1))

Asym xmid scal
Asym 1.0000 0.9868 0.9008
xmid 0.9868 1.0000 0.9063
scal 0.9008 0.9063 1.0000

Example: Confidence Bands for Regression Line. Suppose we want
to plot the linear model fit to the cars data including an assessment of the
variability of the model fit. This can be based on simultaneous confidence
intervals for the regression line x>i β̂:

> K <- model.matrix(lm.cars)[!duplicated(cars$speed),

+ ]

> ci.cars <- confint(glht(lm.cars, linfct = K), abseps = 0.1)

Figure 1 depicts the regression fit together with the confidence band for the
regression line and the pointwise confidence intervals as computed by pre-
dict(lm.cars).
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2 Multiple Comparison Procedures

Multiple comparisons of means, i.e., regression coefficients for groups in AN(C)OVA
models, are a special case of the general framework sketched in the previous sec-
tion. The main difficulty is that the comparisons one is usually interested in,
for example all-pairwise differences, can’t be directly specified based on model
parameters of an AN(C)OVA regression model. We start with a simple one-way
ANOVA example and generalize to ANCOVA models in the following.

Consider a one-way ANOVA model, i.e., the only covariate x is a factor at j
levels. In the absence of an intercept term only, the elements of the parameter
vector β ∈ Rj correspond to the mean of the response in each of the j groups:

> ex <- data.frame(y = rnorm(12), x = gl(3, 4, labels = LETTERS[1:3]))

> aov.ex <- aov(y ~ x - 1, data = ex)

> coef(aov.ex)

xA xB xC
0.5751 -0.1991 0.6626

Thus, the hypotheses β2 − β1 = 0 and β3 − β1 = 0 can be written in form of a
linear function Kβ with

> K <- rbind(c(-1, 1, 0), c(-1, 0, 1))

> rownames(K) <- c("B - A", "C - A")

> colnames(K) <- names(coef(aov.ex))

> K

xA xB xC
B - A -1 1 0
C - A -1 0 1

Using the general linear hypothesis function glht, this so-called ‘many-to-one
comparison procedure’ [Dunnett, 1955] can be performed via

> summary(glht(aov.ex, linfct = K))

Simultaneous Tests for General Linear Hypotheses

Fit: aov(formula = y ~ x - 1, data = ex)

Linear Hypotheses:
Estimate Std. Error t value p value

B - A == 0 -0.7742 0.7468 -1.04 0.51
C - A == 0 0.0875 0.7468 0.12 0.99
(Adjusted p values reported)

Alternatively, a symbolic description of the general linear hypothesis of interest
can be supplied to glht:
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> summary(glht(aov.ex, linfct = c("xB - xA = 0", "xC - xA = 0")))

Simultaneous Tests for General Linear Hypotheses

Fit: aov(formula = y ~ x - 1, data = ex)

Linear Hypotheses:
Estimate Std. Error t value p value

xB - xA == 0 -0.7742 0.7468 -1.04 0.51
xC - xA == 0 0.0875 0.7468 0.12 0.99
(Adjusted p values reported)

However, in the presence of an intercept term, the full parameter vector
β = c(µ, β1, . . . , βj) can’t be estimated due to singularities in the corresponding
design matrix. Therefore, a vector of contrasts β? of the original parameter
vector β is fitted. More technically, a contrast matrix C is included into this
model such that β = Cβ? any we only obtain estimates for β?, but not for β:

> aov.ex2 <- aov(y ~ x, data = ex)

> coef(aov.ex2)

(Intercept) xB xC
0.57509 -0.77423 0.08751

The default contrasts in R are so-called treatment contrasts, nothing but dif-
ferences in means for one baseline group (compare the Dunnett contrasts and
the estimated regression coefficients):

> contr.treatment(table(ex$x))

4 4
4 0 0
4 1 0
4 0 1

> K %*% contr.treatment(table(ex$x)) %*% coef(aov.ex2)[-1]

[,1]
B - A -0.77423
C - A 0.08751

so that KCβ̂? = Kβ̂.
When the mcp function is used to specify linear hypotheses, the glht function

takes care of contrasts. Within mcp, the matrix of linear hypotheses K can be
written in terms of β, not β?. Note that the matrix of linear hypotheses only
applies to those elements of β̂? attached to factor x but not to the intercept
term:

> summary(glht(aov.ex2, linfct = mcp(x = K)))
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Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = y ~ x, data = ex)

Linear Hypotheses:
Estimate Std. Error t value p value

B - A == 0 -0.7742 0.7468 -1.04 0.51
C - A == 0 0.0875 0.7468 0.12 0.99
(Adjusted p values reported)

or, a little bit more convenient in this simple case:

> summary(glht(aov.ex2, linfct = mcp(x = c("B - A = 0",

+ "C - A = 0"))))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = y ~ x, data = ex)

Linear Hypotheses:
Estimate Std. Error t value p value

B - A == 0 -0.7742 0.7468 -1.04 0.51
C - A == 0 0.0875 0.7468 0.12 0.99
(Adjusted p values reported)

More generally, inference on linear functions of parameters which can be
interpreted as ‘means’ are known as multiple comparison procedures (MCP). For
some of the more prominent special cases, the corresponding linear functions can
be computed by convenience functions part of multcomp. For example, Tukey
all-pair comparisons for the factor x can be set up using

> glht(aov.ex2, linfct = mcp(x = "Tukey"))

General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:
Estimate

B - A == 0 -0.7742
C - A == 0 0.0875
C - B == 0 0.8617
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The initial parameterization of the model is automatically taken into account:

> glht(aov.ex, linfct = mcp(x = "Tukey"))

General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:
Estimate

B - A == 0 -0.7742
C - A == 0 0.0875
C - B == 0 0.8617

3 Test Procedures

Several global and multiple test procedures are available from the summary
method of glht objects and can be specified via its test argument:

� test = univariate() univariate p values based on either the t or nor-
mal distribution are reported. Controls the type I error for each partial
hypothesis only.

� test = Ftest() global F test for H0.

� test = Chisqtest() global χ2 test for H0.

� test = adjusted() multiple test procedures as specified by the type ar-
gument to adjusted: "free" denotes adjusted p values as computed from
the joint normal or t distribution of the z statistics (default), "Shaffer"
implements Bonferroni-adjustments taking logical constraints into account
Shaffer [1986] and "Westfall" takes both logical constraints and correla-
tions among the z statistics into account Westfall [1997]. In addition, all
adjustment methods implemented in p.adjust can be specified as well.

4 Quality Assurance

The analyses shown in Westfall et al. [1999] can be reproduced using multcomp
by running the R transcript file in inst/MCMT.
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