Rmetrics – Subject Classification Scheme

An Environment for Teaching Financial Engineering and Computational Finance with R Rmetrics Built 221.10065

The Rmetrics Subject Classification Scheme is used to identify fields and sub-fields in the financial engineering and computational finance packages. The Classification Scheme is designed to assist in the retrieval of R functions. The Classification Scheme is arranged hierarchically, by subdivision of the whole spectrum of functions for financial applications.

1 fBasics

1.1 Economic and Financial Markets Selected Market Data

1.2 Financial Time Series Data

Time Series Representations Time Series Plots Basic Statistics

1.3 Distribution Functions in Finance

Financial Returns
Central Limit Theorem
Normal Distribution
Stable Distribution
Hyperbolic Distribution
Empirical Distribution

1.4 Structures and Dependencies

Short Time Return Correlations Long Range Dependent Volatilities Lagged Volatility Correlations Leverage Effect Taylor Effect

1.5 Probability Theory and Hypothesis Testing

One Sample Tests Two Sample Tests

2 fCalendar

2.1 Time and Date Conventions and Standards ISO8601 Standard

2.2 POSIX Based Implementation

Functions and Tools from R's Pase Package

2.3 'timeDate' Class

Financial Center Concept Time Zone support Daylight Savings Time Rules

2.4 'timeSeries' Class

Representation of timeSeries Objects Mathematical Operations on timeSeries Objects Operations on Daily Time Schedules

2.5 Calendrical Calculations

Ecclesiastical and Public Holidays Business and Holiday Calendars

3 fSeries

3.1 Stationary Time Series: ARMA Modelling

Time Series Simulation True Model Statistics Parameter Estimation Diagnostic Analysis Forecasting

3.2 Time Series Trends: Unit Roots

3.3 Long Range Dependent Time Series

FGN and FARIMA Simulations
True Model Statistics
Estimation of the Hurst Exponent

NEW Nonstationarity and Structural Breaks

3.4 GARCH/APARCH Volatility Models

Alternative Conditional Distributions Time Series Simulation True Model Statistics Parameter Estimation Diagnostic Analysis Ox/G@RCH Interface NEW Seasonal Time Series Modelling
NEW Filtering of Financial and Economic Series

3.5 Nonlinear and Chaotic Time Series

Simulation of Chaotic Time Series Nonlinear and Chaotic Modeling Hypothesis Tests

4. fMultivar

4.1 Trading and Forecasting with Regression Models

Technical Analysis and Trading Indicators
Rolling Descriptive Statistics
Regression Based Trading Models
LM, GLM, GAM, PPR, MARS, POLYMARS

4.2 Neural Networks in Finance and Economocs

Regression Analysys by Neural Networks Time Series Analysis with Neural Networks

4.3 Demand and Supply Models

Linear Equations Modelling Nonlinear Equations Modelling

NEW Vector ARMA Models

NEW Cointegration and Error Correction Models

4.4 Multivariate GARCH Models

VEC, BEKK, DCC, ...

NEW Kalman Filter and State Space Modelling

4.5 Matrix Calculus and Linear Algebra Addon

Vector and Matrix Operations Linear Algebra

5. fExtremes

5.1 Explorative Data Analysis

Extreme Value Plots
Declustering of Time Series

5.2 Fluctuation of Maxima

Block Maxima and the GEV Distribution L-Moments and log-Likelihood Estimation Estimation under MDA Conditions

5.3 Extremes via Point Processes

Point Processes and Pareto Distribution Generalized Pareto Distribution Generalized Linear Modelling

5.4 Extremal Index

Block Method Mean Cluster Size Method Runs Method

6. fCopulae

6.1 Copulae Basics

Distributions and Copulae Densities
Measures of Concordance
Tail Dependencies
Random Samples
Empirical Copulae and Parameter Estimation

6.2 Elliptical Copulae

6.3 Archimedean Copulae

7. fTickdata

NEW High Frequency Financial Market Data

NEW OTC: Foreign Exchange Rate Modelling

NEW Time+Sales: Data from Exchanges

NEW De-Seasonoiazation and De-Volatilization

NEW Outlier Detection

NEW Real Time Trading and Decision Making

8. fOptions

8.1 Basics of Option Pricing

Black-Scholes and Related Options Sensitivity Analysis and Greeks Bi- and Trinomial Option Models

8.2 Pricing Formulas for Exotic Options

Options with Contract Variations Simple Path Dependent Options Limit Dependent Options Multiple Assets Options

8.3 Exponential Brownian Motions

Density Based Approaches
Partial Differential Equation Approaches
Laplace Inversion Approach
Spectral Expansion Approach
Lower and Upper Bounds
Symmetry and Equivalence Relations

8.4 GARCH Option Pricing

Heston-Nandi Options Duan GARCH Model

8.5 Monte Carlo Simulation of Options

Path Dependent Options American Options

9. fBonds

NEW Bond Arithmetic

NEW Discount Curve Modelling

NEW Yield Curve Modelling

NEW Interest Rate Options

NEW Mortgages and Savings

10. fPortfolio

10.1 Multivariate Assets Modelling

Multivariate Normal Distribution
Multivariate Student-t Distribution

10.2 Drawdown Statistics

10.3 Value-at-Risk Modeling

10.4 Two-Assets Portfolios

Mean Variance Portfolio CVaR Portfolio CDaR Portfolio

10.5 Mean Variance Markowitz Portfolios

10.6 CvaR and CDaR Portfolios

Hedge Funds Alternative Investments

10.7 Performance Measures and Benchmarks

11. fActuar

NEW Actuarial Models
NEW Survival Models

12. fAgents

NEW Behaviorial Finance

NEW Agent Based Modelling

Minority Games

Lux-Marchesi Mode

Diethelm Würtz www.rmetrics.org - January 2006 info@rmetrics.org

This Subject Classification Scheme is still uncomplete and may be cannged and enhanced. Suggestions are welcome.