| spread.level.plot {car} | R Documentation | 
Creates plots for examining the possible dependence of spread on level, or an extension of these plots to the studentized residuals from linear models.
spread.level.plot(x, ...)
slp(x, ...)
## S3 method for class 'formula':
spread.level.plot(formula, data=NULL, subset, na.action, 
    main=paste("Spread-Level Plot for", varnames[response], 
    "by", varnames[-response]), ...)
## Default S3 method:
spread.level.plot(x, by, 
  robust.line=any("MASS"==.packages(all=TRUE)), 
  start=0, xlab="Median", ylab="Hinge-Spread", point.labels=TRUE, las=par("las"),
  main=paste("Spread-Level Plot for", deparse(substitute(x)), 
  "by", deparse(substitute(by))), col=palette()[2], pch=1, lwd=2, ...)
## S3 method for class 'lm':
spread.level.plot(x, start=0, 
  robust.line=any("MASS"==.packages(all=TRUE)), 
  xlab="Fitted Values",
  ylab="Absolute Studentized Residuals", las=par("las"),
  main=paste("Spread-Level Plot for", deparse(substitute(x))),
  pch=1, col=palette()[2], lwd=2, ...)
  
## S3 method for class 'spread.level.plot':
print(x, ...)
x | 
a formula or an lm object to be plotted; alternatively a numeric vector. | 
formula | 
a formula of the form y~x, where y is a numeric vector
and x is a factor. | 
data | 
an optional data frame containing the variables to be plotted. 
By default the variables are taken from the environment from which 
spread.level.plot is called. | 
subset | 
an optional vector specifying a subset of observations to be used. | 
na.action | 
a function that indicates what should happen when the data contain NAs. 
The default is set by the na.action setting of options. | 
by | 
a factor, numeric or character vector defining groups. | 
robust.line | 
if TRUE a robust line is fit using the rlm function in
the MASS package; if FALSE a line is fit using lm. | 
start | 
add the constant start to each data value. | 
main | 
title for the plot. | 
xlab | 
label for horizontal axis. | 
ylab | 
label for vertical axis. | 
point.labels | 
if TRUE label the points in the plot with group names. | 
las | 
if 0, ticks labels are drawn parallel to the
axis; set to 1 for horizontal labels (see par). | 
col | 
color for points and lines; the default is the second entry
in the current color palette (see palette
and par). | 
pch | 
plotting character for points; default is 1 
(a circle, see par). | 
lwd | 
line width; default is 2 (see par). | 
... | 
arguments passed to plotting functions. | 
Except for linear models, computes the statistics for, and plots, a Tukey spread-level plot of log(hinge-spread) vs. log(median) for the groups; fits a line to the plot; and calculates a spread-stabilizing transformation from the slope of the line.
For linear models, plots log(abs(studentized residuals) vs. log(fitted values).
The function slp is an abbreviation for spread.level.plot.
A list containing:
Statistics | 
a matrix with the lower-hinge, median, upper-hinge, and hinge-spread
for each group. (Not for an lm object.) | 
PowerTransformation | 
spread-stabilizing power transformation, calculated as 1 – slope of the line fit to the plot. | 
John Fox jfox@mcmaster.ca
Fox, J. (1997) Applied Regression, Linear Models, and Related Methods. Sage.
Hoaglin, D. C., Mosteller, F. and Tukey, J. W. (Eds.) (1983) Understanding Robust and Exploratory Data Analysis. Wiley.
spread.level.plot(interlocks+1~nation, data=Ornstein) ## Loading required package: MASS ## LowerHinge Median UpperHinge Hinge-Spread ## US 2 6.0 13 11 ## UK 4 9.0 14 10 ## CAN 6 13.0 30 24 ## OTH 4 15.5 24 20 ## ## Suggested power transformation: 0.1534487 slp(lm(interlocks ~ assets + sector + nation, data=Ornstein)) ## Suggested power transformation: 0.3222165 ## Warning message: ## Start = 3 added to fitted values to avoid 0 or negative values. in: spread.level.plot.lm(x, ...)