| durbin.watson {car} | R Documentation | 
Computes residual autocorrelations and generalized Durbin-Watson statistics and their bootstrapped p-values.
durbin.watson(model, ...)
## S3 method for class 'lm':
durbin.watson(model, max.lag=1, simulate=TRUE, reps=1000,
    method=c("resample","normal"),
    alternative=c("two.sided", "positive", "negative"), ...)
## Default S3 method:
durbin.watson(model, max.lag=1, ...)
## S3 method for class 'durbin.watson':
print(x, ...)
model | 
a linear-model object, or a vector of residuals from a linear model. | 
max.lag | 
maximum lag to which to compute residual autocorrelations and Durbin-Watson statistics. | 
simulate | 
if TRUE p-values will be estimated by bootstrapping. | 
reps | 
number of bootstrap replications. | 
method | 
bootstrap method: "resample" to resample from the observed
residuals; "normal" to sample normally distributed errors with 0 mean
and standard deviation equal to the standard error of the regression. | 
alternative | 
sign of autocorrelation in alternative hypothesis; specify
only if max.lag = 1; if max.lag > 1, then alternative is
taken to be "two.sided". | 
... | 
arguments to be passed down to method functions. | 
x | 
durbin.watson object. | 
Returns an object of type "durbin.watson".
John Fox jfox@mcmaster.ca
Fox, J. (1997) Applied Regression, Linear Models, and Related Methods. Sage.
durbin.watson(lm(fconvict ~ tfr + partic + degrees + mconvict, data=Hartnagel)) ## lag Autocorrelation D-W Statistic p-value ## 1 0.688345 0.6168636 0 ## Alternative hypothesis: rho != 0