
January 4, 2007 manual.nw 1Here we describe the basics of the XML parsing facilities in the Omegahat package for R and S. There are
two styles of parsing – document and event based.

Document The document approach reads an entire file into memory as a hierarchical tree (i.e. a lists of lists
in R and S) of XML tags or nodes. These XML elements in the tree contain the name of the XML
tag, its attributes and a list of the sub-elements.

Event The event based style invokes handlers as each XML element (start of a tag, end of a tag, comment,
text tag, etc.) is encountered in the parsing stream. The document approach is usually simpler to
understand and use for standard situations, while the event driven style provides greater control and
the potential for more efficient handling of very large XML data sources.

We discuss R functions for the document based approach first and then outline the event-based approach.
In each of the two approaches, there is a single function that one calls to perform the parsing.

As well as parsing regular XML documents, the facilities in the package allow one to read and manipulate
(within R or S) DTDs – Document Type Definitions – which define or provide a general template for different
groups of documents. This facility can be used to perform meta-programming on documents, both creating
valid XML documents programmatically and also providing mappings between tags.

This is more of a “how to” than a “why”, or “how does it work” document.

1 Basics Idea

Each XML document is made up of XML tags organized hierarchically, where tags are nested within other
tags and some tags just have text.

2 Document-based Parsing

The fuction for parsing an XML document and returning it as a list of nodes is xmlTreeParse()
We will consider the following Structure Vector Graphics (SVG) file (in data/svg.xml)1 and we will setup

a mechanism to process and render it.

2.1 Processing the Nodes

When we build the R document tree having generated the internal DOM version in C, we create the different
nodes by first creating the default version with classes XMLNode, XMLComment, XMLEntity, XMLText,
etc. However, the user can provide functions that post-process these nodes before they are added to the R
document tree. To do this, one provides a named list of functions as the value of the parameter handlers.
The C-level conversion takes each XML element, converts it to an XMLNode (or similar class) and then calls
the appropriate function from this list. These functions return either NULL indicating that the node should
be discarded and not added to the document tree, or an object to be added to the tree. Currently, the only
argument to these functions is the node itself. (The parent may be added in the future.) This node contains
its children nodes. (If this proves to be excessively expensive as many nodes are discarded or modified to
discard their child information, one should consider event driven parsing.)

How is the appropriate function selected?
A simple example of utilizing these post-processing node handlers is to discard all comment elements.

〈* 〉≡
doc <- xmlTreeParse(system.file("exampleData", "mtcars.xml", package = "XML"),

handlers = list(startElement =function(node) {
if(inherits(node, "XMLComment"))

NULL
else

January 4, 2007 manual.nw 2
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg SYSTEM "SVG-19990812.dtd">
<svg width="120" height="120">
<!-- define the outside border as a black square with a smaller white square on top of it -->
<rect x="1" y="1" width="120" height="120" style="fill: black"/>
<rect x="10" y="10" width="102" height="102" style="fill: white"/>
<!-- position the "ia" near the center of the image -->
<text style="font-size: 70; font-family: serif; font-weight: bolder; color: black"

x="28" y="85">ia</text>
<!-- build a black triangle that covers the dot of the "i" and a black rectangle for the base.
note that the "g" tag groups the two objects and applies the black fill to both objects at
the same time -->
<g style="fill: black">
<polygon points="60 12 106 51 14 51 60 12" />
<rect x="14" y="87" width="92" height="19" />
</g>
<!-- create the white dot for the "i" -->
<ellipse cx="40" cy="44" rx="7" ry="4" style="fill:white" />
</svg>

Figure 1: SVG File

node
}),

asTree = TRUE
)

A slightly more advanced version uses a closure to store a list of tag names that we wish to keep in the
document tree, discarding all others. (Event driven parsing would be better for this application.)
〈* 〉+≡

xmlKeepTags <- function(tagNamesToKeep) {
startElement <- function(node) {

if(any(xmlName(node) == tagNamesToKeep)) {
cat("Keeping",xmlName(node),"\n")
return(node)

}
else {
cat("Discarding",xmlName(node),"\n")
return(NULL)

}
}
return(list(startElement=startElement))

}

doc <- xmlTreeParse(system.file("exampleData", "mtcars.xml", package = "XML"),
xmlKeepTags(c("variables","dataset")))

January 4, 2007 manual.nw 3Note that the nodes are processed upwards (i.e. from leaf to root node) rather than from the root down
through the child nodes. Thus, if we discard the parent node of a node we are trying to preserve, e.g variables
when trying to preserve variable, we will throw away the children nodes also and discard all the variable
elements.

One can query the DTD to find what nodes allow the ones in which we are interested as sub-elements.
3a 〈* 〉+≡

dtd <- parseDTD("DatasetByRecord.dtd")

which <- character()
for(i in names(dtd$elements)) {if(dtdValidElement("variable", i, dtd)) which - c(which, i)}

3 Event-based Parsing

Processing each XML element as the parser occurs can be a very useful and more flexible approach than
reading an entire document, maintaining an intermediate form in memory and then processing. Firstly, the
amount of memory required is smaller, often significantly. In other cases, the source of the XML may not
be a complete document, but may be a source that periodically generates more output. For example, one
might be monitoring a device in a factory, etc. where the data is an “infinite” stream. By processing the
XML units as they arrive, one can provide dynamic updating of the intermediate or current results. This
approach allows users to decide whether to continue, monitor for strange events, perform quality control
procedures and generally perform statistical analysis on the process, not static data. This is similar to the
idea of triggers in databases. A third case where the element-wise approach works well is when one wishes
to extract rows or cells that fit particular criteria. Rather than reading all the data and then processing it,
one can discard those records that do not satisfy the criteria. This record-wise processing works well when
a transformation of the record is required as the transformation can be done in-line before assigning the
value(s) and hence avoids a copy of the data.

We will look at an example of the dynamic event-driven processing which reads a data set and keeps
certain records. The first example will keep rows based on their order or index. The second example
examines the contents of the record to determine whether it should be discarded or kept. These are different
in that in the first, we can determine this when we handle the record tag, whereas the second case waits
for the text value within the record tag and must be done differently. This uses the basic event handler in
dataFrameEvent and provides alternative versions of the record() and text() functions in that closure. The
record() closure

3b 〈* 〉+≡
record <- function(x, atts) {
if(is.na(match(atts[["id"]], desiredRowNames))) {

discard this entry
return()

}

processRow - 1
advance the current record index.
(Same as previous version).

currentRecord - currentRecord + 1
rowNames - c(rowNames, atts[["id"]])

}

January 4, 2007 manual.nw 4The definition of the text() changes so that it returns if we are expecting a record (i.e. not expecting a
variable name) and processRow is F.

One other small changes relate to how we set the dimensions and the row names of the resulting dataframe.
Rather than using the number of records reported in the XML file, we use the length of the desired row
names specified when creating the closure. This can be handled more dynamically if we cannot assume
uniqueness, etc.

3.1 Filtering on a Record’s Values

We now make the filtering slightly more complicated. We will create an event filter to which the user supplies
a function expecting the record as its only argument and returning a logical value indicating whether the
record should be accepted or not. The argument is a named list of values.

function(data) {
as.numeric(data["cyl"]) >= 6 & as.integer(data[2]) < 100

}

Here, we change the logic slightly from the way we read the entire dataframe. Firstly, we do not want to
allocate a matrix or data frame to store the number of records that the dataset tag indicates. We are trying
to be conservative in the amount of memory we use. So, instead, we append each record that we accept to
a list and at the conclusion of the XML stream, we convert the list of records to a dataframe. This involves
changing the segment in the text() function

4a 〈* 〉+≡
for(i in els) {
data[currentRecord, currentColumn] - as.numeric(i)
currentColumn - currentColumn + 1

}

to read
4b 〈* 〉+≡

data[[length(data)+1]] - els

Another change is how we handle the record id attribute. We can discard the current record count
(currentRecord) and change the definition of the record handler to store the record id. The text handler can
then access this if it accepts the record, and append it to the rowNames vector.

4c 〈* 〉+≡
names(els) <- varNames
if(accept(els)) {
data[[length(data)+1]] - els
rowNames - c(rowNames, currentRowName)

}

And finally, the endElement() function in the closure is changed to convert the list of records stored in
data to a data frame.

4d 〈* 〉+≡
if(x == "dataset") {
data <- data.frame(matrix(unlist(data),length(data),length(varNames), byrow=T))
names(data) <- varNames
rownames(data) <- rowNames
}

After all this, we can use the filter

January 4, 2007 manual.nw 5〈* 〉+≡
accept <- function(data) {

as.numeric(data["cyl"]) >= 6 & as.integer(data[2]) < 100
}

myData <- xmlEventParse(system.file("exampleData", "mtcars.xml", package = "XML"),
valueDataFrameFilter(accept))$data()

〈*
〉

	Basics Idea
	Document-based Parsing
	Processing the Nodes

	Event-based Parsing
	Filtering on a Record's Values

