Dynamic language models

Damir Ćavar

Language models

- Language models
- Dynamic models

- Language models
- Dynamic models
- Induction of language regularities

- Language models
- Dynamic models
- Induction of language regularities
- Research directions

Symbolic rule-based approaches

- Symbolic rule-based approaches
 - Direct linguistic foundation

- Symbolic rule-based approaches
 - Direct linguistic foundation
 - Grammars, rules and linguistic heuristics

- Symbolic rule-based approaches
 - Direct linguistic foundation
 - Grammars, rules and linguistic heuristics
 - Complexity on the level of grammar development

- Symbolic rule-based approaches
 - Direct linguistic foundation
 - Grammars, rules and linguistic heuristics
 - Complexity on the level of grammar development
 - Simple implementations with potentially complex computations

- Problems:
 - Coverage and robustness
 - Complexity of grammars and deviation of real language data
 - Bias and lack of flexibility/interoperability
 - Theory driven and with a specific formalism.

- Statistical approaches
 - Indirect linguistic foundation or
 - Corpora (e.g. audio, text)
 - Direct linguistic foundation with quantification of grammars and rule-sets
 - Sparse data problem

Problems

- Static models: grammar-based and statistical (empiricist or connectionist)
- Dynamic language properties: changes
 - lexical (e.g. morphological, semantic)
 - grammar (e.g. likelihood of constructions, new constructions types)
 - domains (e.g. pragmatics)

Possible Solutions

- Dynamic models:
 - Adaptive
 - Deductive and inductive
 - Symbolic and/or statistical

Concepts

- Deduction
 - Logic and rule-based
 - Meta-knowledge driven
 - Core statistical model
- Induction
 - Empirically and data-oriented

Concepts

Induction:

- Identification of basic strategies with broad coverage
 - for language types
 - for linguistic levels

• Intuition:

 Language properties are full of regularities and patterns, at some levels these should be learnable

Research Questions

- Which language properties can be induced with what kind of strategies and effort?
 - Specification of strategies for learning of regularities at different linguistic levels (e.g. phonology, morphology, syntax, semantics).
 - Typologies of languages on a technical and formal learning strategies scale.

Bootstrapping Cues

- Various hypotheses about what kind of language properties serve as cues for (induction or deduction of) linguistic knowledge
 - Phonological bootstrapping
 - Role of lexical items (e.g. function words)
 - Semantic bootstrapping

Bootstrapping Cues

- Other possible cues:
 - Morphological regularities
 - Used successfully in language technology:
 - Samuelsson (1994), later in Brants' (2000)
 TnT

Acquisition of Morphology

- Acquisition of morphological regularities:
 - Incremental
 - Phases with deviations from target grammar
 - Persistence of learners: corrections ignored, mismatch between parsing/processing and production
 - Stable target grammar intuition

Theoretical Concepts

- Principles and Parameters Model
- Optimality Theory Approach
- Connectionist Models
- Here:
 - Purely empiricist approach

Theoretical Concepts

- What kind of language properties can be identified from just language data?
- How can these properties be used to learn/ induce higher level linguistic knowledge?
 - What kind of linguistic knowledge is needed to achieve this?
 - What are crucial differences between languages?

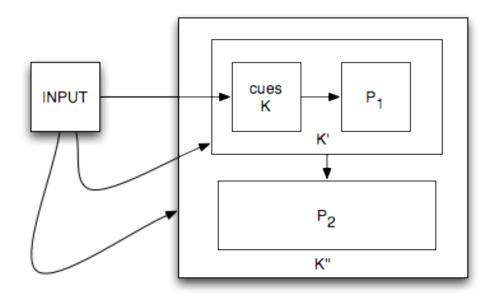
Applied Context

- Use for language technologies:
 - From approx. 5500 languages, only 1% is adequately described and has more or less adequate technological resources.
 - Universal (dynamic, adaptive, extensible) solutions (minimally language specific) can increase the development speed of NLP tools.

Cue-based Learning

Incremental Cue-based Learning

- Initial Bootstrapping Phase: An initial set of cues K identifies specific constraints and their ranking P₁ given some input.
- Subsequent Bootstrapping Phases: Together with the set of cues K and the induced knowledge P₁ a new set of cues K' is derived, and so on.



Cue-based Learning

- Elementary Cues
 - e.g. phones, morphemes, phrases and their statistical, distributional, and information theoretic properties
- Secondary Cues
 - e.g. phonemes, categories (types) and their statistical, distributional, and information theoretic properties

Cue Identification

- Secondary level cue-identification:
 - Sparse data problem on the token level.
 - Solution:
 - Typing: identifying properties of elementary units (e.g. morphemes) on the basis of:
 - morphological properties
 - syntactic properties

Alternative

- Basic constraints are fundamental and not "symptom" related.
 - Information Theory (e.g. Entropy)
 - Statistical (e.g. Frequency)
 - Distributional (e.g. absolute or relative position and relation to others)
- Language specific constraints can be induced.

Architecture

- General principles:
 - Incremental input with incremental grammar induction and optimization
 - Minimum revisions via restricted memory (short term memory)
 - Learning only from previous experience

Fundamental Constraints

- Language properties: equilibrium between
 - size of grammar
 - usability

size ← grammar — usability

sleeps sleep dream dreams

Data

sleeps sleep dream dreams

Data

sleeps P(sleeps)sleep P(sleep)dream P(dream)dreams P(dreams)

Hypothesis 1 size: 38 bytes

sleeps sleep dream dreams

Data

sleeps P(sleeps)sleep P(sleep)dream P(dream)dreams P(dreams)

Hypothesis 1 size: 38 bytes

sleep P(sleeps) Ptr(-s) dream P(dream) Ptr(-s) -s P(-s)

Hypothesis 2 size: 33 bytes

Minimum Description Length

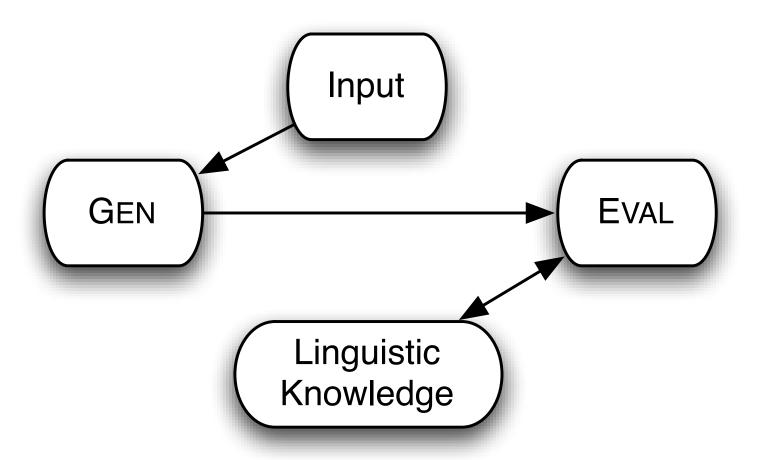
- Evaluation in a constraint satisfaction system:
 - Minimum Description Length Principle: Minimize the description length of the language model, including the size of the described data. (Occam's razor) (Gruenwald et al. 2005)
 - Trade off goodness-of-fit on the observed data with the complexity or richness of the data.

Minimum Description Length

- Let H₁, H₂ ... H_n be a list of candidate models. The best hypothesis H ∈ H₁ ∪ H₂ ∪ ... H_n to explain the data D is the one which minimizes the sum L(H)+L(D|H).
 - L(H) is the length, in bits, of the description of the hypothesis; and
 - L(D|H) is the length, in bits, of the description of the data when encoded with the help of the hypothesis.

- General processes:
 - Generation of hypotheses for a given input
 - Selection of appropriate hypotheses
 - Induction of grammar rules/constraints and their ranking

General Induction Architecture



- Hypothesis generation:
 - Random or complete
 - Statistical:
 - Transitional probabilities (Harris, 1955)
 - EM-based (Brent, et al.)
 - Alignment based (ABL) (van Zaanen, 2001)

- Hypothesis generation: ABL
 - Substitutability and Complementarity
 - Given two words (one known word and one unknown input word), the edges of matching substrings mark morphological boundaries.
 - Advantage:
 - Learning from previous knowledge.

Evaluator

- Weighted voting constraints:
 - Minimum Description Length
 - Mutual Information (point-wise, average, left- and right)
 - Relative Entropy
 - Surface constraints: morph. length, frequency, segment count, etc.

- Grammar size
 - Minimum Description Length Principle (MDL)
 - From *n* grammars that describe the same data, chose the grammar with the smallest size (e.g. number of symbols, length of terminals)

- Grammar size
 - Relative Entropy
 - From a set of hypotheses about the structure of an input *i*, add the hypothesis *b* to the set of grammar rules/hypotheses that results in lowest divergence from the original grammar.

- Grammar size
 - Relative Entropy
 - We calculate RE as a variant of the Kullback-Leibler Divergence
 - Given grammars GI and G2, choose the grammar that has the smallest divergence from the initial grammar G0.

- Grammar size Relative Entropy
 - Kullback-Leibler Divergence

$$\sum_{x \in X} P(x) lg \frac{P(x)}{Q(x)}$$

$$\sum_{x \in X} P(x) lg \frac{1}{P(x)}$$

Hypothesis evaluation: Mutual Information

$$\sum_{y \in \{\langle xY \rangle\}} p(\langle xy \rangle | x) lg \frac{p(\langle xy \rangle)}{p(x)p(y)}$$

- Pairwise summation of left MI of x and right MI of y.
- Accepting morpheme boundaries at local MI-maxima.

- Mutual Information
 - symmetric: $MI(\langle xy \rangle) = MI(\langle yx \rangle)$
 - frequency sensitive
- Relative Entropy
 - asymmetric: given $\langle xy \rangle$, RE(y) \neq RE(x)

- Usability related criteria:
 - Frequency of Morpheme Boundaries
 - Number of Morpheme Boundaries
 - Length of Morphemes

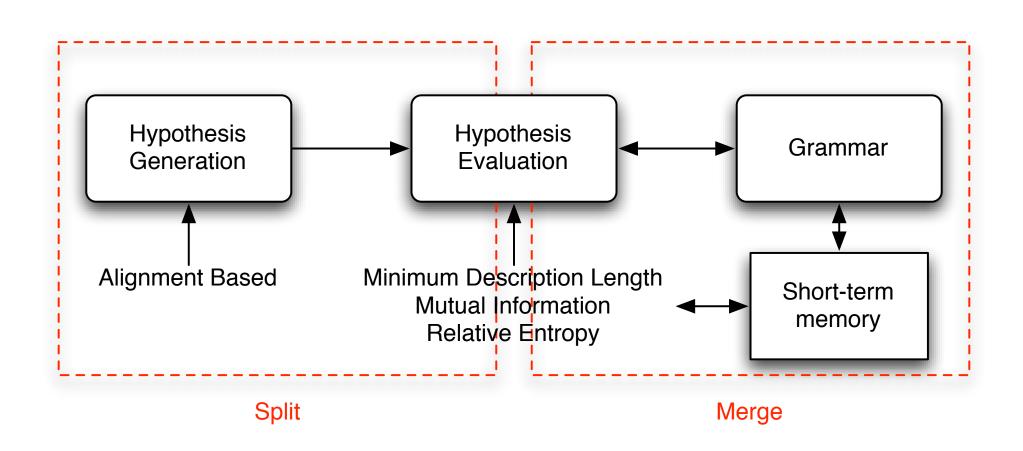
- Restricted grammar optimization:
 - Small short-term memory window (e.g. 100 utterances).
 - Optimization of the sub-grammar within the window.
 - Significance of the generated rules: elimination of rules with low significance scores.

- Voting-based architecture:
 - Every component votes for a hypothesis (= grammar)
 - The hypotheses with the highest votes win.

- Weighting of constraints:
 - Every voter is weighted (0-1)
 - Compatible to constraint ranking

- Weighting of constraints:
 - Means of self-supervision:
 - Online adjustment of the weights of the constraints that produce hypotheses that do not enter grammar.
 - Partially equivalent to Error-driven
 Constraint Demotion

ABUGI



- Input: Utterances with word boundaries
 - The cars are ugly.
- Output:
 - Signature for every morpheme merged with previously generated signatures:
 - #car\$ = [NONE, s\$]
 - s\$ = {# car\$, ...}

- Evaluation Gold-standard:
 - manual segmentation of:
 - CHILDES Peter corpus
 - 10% Brown corpus
 - CELEX

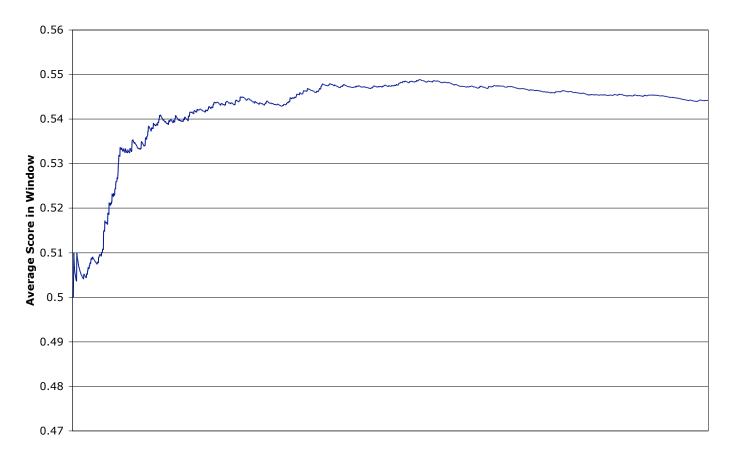
- Evaluation:
 - Online incremental self-evaluation
 - Parallel input: raw & bracketed words
 - Reason:
 - Evaluation of grammar development
 - Visualization of saturation curve

- Evaluation:
 - Offline incremental human evaluation
 - At every increment of grammar size s, dump the grammar.
 - Human annotation of paradigms and segmentation.

- Evaluation:
 - Corpora:
 - English: CHILDES, Brown corpus, Penn Treebank
 - Latin: Caesar "De Bello Gallico"
 - Japanese: "Genji Monogatari"

• Results: F = (beta² + 1)*precsion*recall / ((beta²*precision) + recall)

Progression of Average Score of Windows



- Brown & CHILDES Peter corpus (English):
 - Precision: 100%
 - Recall: ca. 80%
- Latin:
 - Precision: 99%
 - Recall: 35%

- No supervision wrt. notions of stem and affix:
 - Notions of stem or affix are derivable via clustering on the basis of the signatures.
 - s# = [\$drink#, \$sleep#, \$dream#, ...]
 - \$smoke# = [NONE, s#, ed#, ...]

- Acquisition Order (English):
 - Inflectional Morphology first
 - Derivational Morphology second
 - Prefixes and Infixes last
- Corresponds to observations from language acquisition
- Corresponds to the frequency distribution of these morpheme types