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Modeling Language

e Symbolic rule-based approaches
® Direct linguistic foundation
e Grammars, rules and linguistic heuristics

e Complexity on the level of grammar
development

e Simple implementations with potentially
complex computations



Modeling Language

® Problems:
e (Coverage and robustness

e Complexity of grammars and deviation of
real language data

e Bias and lack of flexibility/interoperability

® Theory driven and with a specific
formalism.



Modeling Language

e Statistical approaches
e |ndirect linguistic foundation or
e (Corpora (e.g. audio, text)

® Direct linguistic foundation with
quantification of grammars and rule-sets

® Sparse data problem



Problems

e Static models: grammar-based and statistical
(empiricist or connectionist)

¢ Dynamic language properties: changes

lexical (e.g. morphological, semantic)

grammar (e.g. likelihood of constructions, new
constructions types)

domains (e.g. pragmatics)



Possible Solutions

® Dynamic models:
e Adaptive
¢ Deductive and inductive

e Symbolic and/or statistical



Concepts

® Deduction
® | ogic and rule-based
e Meta-knowledge driven
e (ore statistical model
® |nduction

e Empirically and data-oriented



Concepts

e |nduction:

¢ |dentification of basic strategies with broad
coverage

e for language types
e for linguistic levels

® |ntuition:

® | anguage properties are full of regularities and
patterns, at some levels these should be
learnable



Research Questions

e \Which language properties can be induced
with what kind of strategies and effort?

® Specification of strategies for learning of
regularities at different linguistic levels (e.g.
phonology, morphology, syntax, semantics).

® Typologies of languages on a technical and
formal learning strategies scale.



Bootstrapping Cues

e \/arious hypotheses about what kind of
language properties serve as cues for
(induction or deduction of) linguistic knowledge

® Phonological bootstrapping
® Role of lexical items (e.g. function words)

e Semantic bootstrapping



Bootstrapping Cues

® Other possible cues:
e Morphological regularities
e Used successfully in language technology:

e Samuelsson (1994), later in Brants’ (2000)
nT



Acquisition of
Morphology

® Acquisition of morphological regularities:

Incremental
Phases with deviations from target grammar

Persistence of learners: corrections ignored,
mismatch between parsing/processing and
production

Stable target grammar intuition



Theoretical Concepts

Principles and Parameters Model
Optimality Theory Approach
Connectionist Models

Here:

e Purely empiricist approach



Theoretical Concepts

e \What kind of language properties can be
identified from just language data?

® How can these properties be used to learn/
induce higher level linguistic knowledge?

e \WVhat kind of linguistic knowledge is needed
to achieve this?

e \Vhat are crucial differences between
languages?



Applied Context

e Use for language technologies:

® From approx. 5500 languages, only 1% is
adequately described and has more or less
adequate technological resources.

e Universal (dynamic, adaptive, extensible)
solutions (minimally language specific) can
increase the development speed of NLP
tools.



Cue-based Learning

® |ncremental Cue-based Learning

® |nitial Bootstrapping Phase:An initial set of cues K identifies specific
constraints and their ranking P| given some input.

® Subsequent Bootstrapping Phases: Together with the set of cues K and the
induced knowledge P| a new set of cues K’ is derived, and so on.

INPUT | CUES | P,




Cue-based Learning

® Elementary Cues

® e.g. phones, morphemes, phrases and their
statistical, distributional, and information
theoretic properties

® Secondary Cues

® e.g. phonemes, categories (types) and their
statistical, distributional, and information
theoretic properties



Cue ldentification

® Secondary level cue-identification:
® Sparse data problem on the token level.

® Solution:

® Typing: identifying properties of elementary
units (e.g. morphemes) on the basis of:

® morphological properties

® syntactic properties



Alternative

® Basic constraints are fundamental and not
“symptom” related.

® |nformation Theory (e.g. Entropy)
® Statistical (e.g. Frequency)

® Distributional (e.g. absolute or relative position
and relation to others)

® |anguage specific constraints can be induced.



Architecture

® General principles:

® |ncremental input with incremental
grammar induction and optimization

® Minimum revisions via restricted memory
(short term memory)

® | earning only from previous experience



Fundamental
Constraints

® |anguage properties: equilibrium between
® size of grammar

® usability

Size « grammar > usability
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Description Length

sleeps
sleep
dream

dreams

Data

sleeps P(sleeps)
sleep P(sleep)
dream P(dream)
dreams P(dreams)

Hypothesis 1
size: 38 bytes
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Description Length

sleeps
sleep
dream

dreams

Data

sleeps P(sleeps)
sleep P(sleep)
dream P(dream)
dreams P(dreams)

Hypothesis 1
size: 38 bytes

sleep P(sleeps) Ptr(-s)
dream P(dream) Ptr(-s)
-s P(-s)

Hypothesis 2
size: 33 bytes



Minimum Description
Length

® Evaluation in a constraint satisfaction system:

® Minimum Description Length Principle: Minimize
the description length of the language model,
including the size of the described data.
(Occam's razor) (Gruenwald et al. 2005)

® Trade off goodness-of-fit on the observed data
with the complexity or richness of the data.
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Minimum Description
Length

o |etH4, Ho... Hn be a list of candidate models.
The best hypothesisHe Hi UH2 U ... Hh to

explain the data D is the one which minimizes
the sum L(H)+L(D|H).

e | (H) is the length, in bits, of the description of the
hypothesis; and

e | (DJ|H) is the length, in bits, of the description of the
data when encoded with the help of the hypothesis.
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Architecture

® General processes:
® Generation of hypotheses for a given input

® Selection of appropriate hypotheses

® |nduction of grammar rules/constraints
and their ranking



General Induction
Architecture

Input

‘ GEN | >! EVAL ,
Linguistic
Knowledge




Architecture

® Hypothesis generation:
® Random or complete

® Statistical:
® Transitional probabilities (Harris, 1955)
® EM-based (Brent, et al.)

® Alignment based (ABL) (van Zaanen, 2001)



Architecture

® Hypothesis generation: ABL
® Substitutability and Complementarity

® Given two words (one known word and one
unknown input word), the edges of matching
substrings mark morphological boundaries.

® Advantage:

® | earning from previous knowledge.



Evaluator

® Weighted voting constraints:
® Minimum Description Length

® Mutual Information (point-wise, average,
left- and right)

® Relative Entropy

® Surface constraints: morph. length,
frequency, segment count, etc.



Architecture

® Grammar size

® Minimum Description Length Principle
(MDL)

® From n grammars that describe the
same data, chose the grammar with the
smallest size (e.g. number of symbols,
length of terminals)



Architecture

® Grammar size
® Relative Entropy

® From a set of hypotheses about the
structure of an input 7, add the
hypothesis » to the set of grammar
rules/hypotheses that results in lowest
divergence from the original grammar.



Architecture

® Grammar size

® Relative Entropy

® We calculate RE as a variant of the
Kullback-Leibler Divergence

® Given grammars G| and G2, choose the
grammar that has the smallest
divergence from the initial grammar GO.



Architecture

® Grammar size - Relative Entropy

® Kullback-Leibler Divergence

> el




Architecture

® Hypothesis evaluation: Mutual Information

> pl<ay >zl

ye{<zY >}

p(< xy >)
p(z)p(y)

® Pairwise summation of left M| of x and right
Ml of y.

® Accepting morpheme boundaries at local
MIl-maxima.



Architecture

® Mutual Information
e symmetric: Ml(<xy>) = MI(<yx>)
® frequency sensitive

® Relative Entropy

® asymmetric: given <xy>, RE(y) # RE(x)



Architecture

® Usability related criteria:
® Frequency of Morpheme Boundaries
® Number of Morpheme Boundaries

® | ength of Morphemes



Architecture

® Restricted grammar optimization:

® Small short-term memory window (e.g.
|00 utterances).

® Optimization of the sub-grammar within
the window.

® Significance of the generated rules:
elimination of rules with low significance
scores.



Architecture

® Voting-based architecture:

® Every component votes for a hypothesis
(= grammar)

® The hypotheses with the highest votes
win.



Architecture

® Weighting of constraints:
® Every voter is weighted (0-1)

® Compatible to constraint ranking



Architecture

® Weighting of constraints:

® Means of self-supervision:

® Online adjustment of the weights of the
constraints that produce hypotheses
that do not enter grammar.

® Partially equivalent to Error-driven
Constraint Demotion
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Architecture

® |nput: Utterances with word boundaries
® The cars are ugly.
e Output:

® Signature for every morpheme merged
with previously generated signatures:

o Hcar$ = [NONE, s$]
o $=[#car$, ...]



Morphology Induction

® Evaluation Gold-standard:
® manual segmentation of:
® CHILDES Peter corpus

® |0% Brown corpus

o CELEX



Morphology Induction

® Evaluation:
® Online incremental self-evaluation
® Parallel input: raw & bracketed words
® Reason:
® Evaluation of grammar development

® Visualization of saturation curve



Morphology Induction

® Evaluation:
® Offline incremental human evaluation

® At every increment of grammar size s,
dump the grammar.

® Human annotation of paradigms and
segmentation.



Morphology Induction

® Evaluation:
e Corpora:

® English: CHILDES, Brown corpus, Penn
Treebank

® Latin: Caesar “De Bello Gallico”

® Japanese: ‘Genji Monogatari”



Morphology Induction
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Morphology Induction

® Brown & CHILDES Peter corpus (English):
® Precision: 100%
® Recall: ca. 80%

e [atin:
® Precision: 99%

® Recall: 35%



Morphology Induction

® No supervision wrt. notions of stem and
affix:

® Notions of stem or affix are derivable via
clustering on the basis of the signatures.

® s# = [$drink#, $sleep#, $dream#, ...]
® $smoke# = [NONE, s#, ed#, ...]



Morphology Induction

® Acquisition Order (English):
® |nflectional Morphology first
® Derivational Morphology second
® Prefixes and Infixes last
® Corresponds to observations from language
acquisition

® Corresponds to the frequency distribution
of these morpheme types



