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Modeling Language

• Problems:

• Coverage and robustness

• Complexity of grammars and deviation of 
real language data

• Bias and lack of flexibility/interoperability

• Theory driven and with a specific 
formalism.
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Modeling Language

• Statistical approaches

• Indirect linguistic foundation or

• Corpora (e.g. audio, text)

• Direct linguistic foundation with 
quantification of grammars and rule-sets

• Sparse data problem
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Problems

• Static models: grammar-based and statistical 
(empiricist or connectionist)

• Dynamic language properties: changes

• lexical (e.g. morphological, semantic)

• grammar (e.g. likelihood of constructions, new 
constructions types)

• domains (e.g. pragmatics)
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Possible Solutions

• Dynamic models:

• Adaptive

• Deductive and inductive

• Symbolic and/or statistical

7



Concepts

• Deduction

• Logic and rule-based

• Meta-knowledge driven

• Core statistical model

• Induction

• Empirically and data-oriented
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Concepts

• Induction:

• Identification of basic strategies with broad 
coverage

• for language types

• for linguistic levels

• Intuition:

• Language properties are full of regularities and 
patterns, at some levels these should be 
learnable

9



Research Questions

• Which language properties can be induced 
with what kind of strategies and effort?

• Specification of strategies for learning of 
regularities at different linguistic levels (e.g. 
phonology, morphology, syntax, semantics).

• Typologies of languages on a technical and 
formal learning strategies scale.

10



Bootstrapping Cues

• Various hypotheses about what kind of 
language properties serve as cues for 
(induction or deduction of) linguistic knowledge

• Phonological bootstrapping

• Role of lexical items (e.g. function words)

• Semantic bootstrapping
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Bootstrapping Cues

• Other possible cues:

• Morphological regularities

• Used successfully in language technology:

• Samuelsson (1994), later in Brants’ (2000) 
TnT
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Acquisition of 
Morphology

• Acquisition of morphological regularities:

• Incremental

• Phases with deviations from target grammar

• Persistence of learners: corrections ignored, 
mismatch between parsing/processing and 
production

• Stable target grammar intuition
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Theoretical Concepts

• Principles and Parameters Model

• Optimality Theory Approach

• Connectionist Models

• Here:

• Purely empiricist approach
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Theoretical Concepts

• What kind of language properties can be 
identified from just language data?

• How can these properties be used to learn/
induce higher level linguistic knowledge?

• What kind of linguistic knowledge is needed 
to achieve this?

• What are crucial differences between 
languages?
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Applied Context

• Use for language technologies:

• From approx. 5500 languages, only 1% is 
adequately described and has more or less 
adequate technological resources.

• Universal (dynamic, adaptive, extensible) 
solutions (minimally language specific) can 
increase the development speed of NLP 
tools.
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Cue-based Learning

• Incremental Cue-based Learning
• Initial Bootstrapping Phase: An initial set of cues K identifies specific 

constraints and their ranking P1 given some input.

• Subsequent Bootstrapping Phases: Together with the set of cues K and the 
induced knowledge P1 a new set of cues K’ is derived, and so on.



Cue-based Learning

• Elementary Cues

• e.g. phones, morphemes, phrases and their 
statistical, distributional, and information 
theoretic properties

• Secondary Cues

• e.g. phonemes, categories (types) and their 
statistical, distributional, and information 
theoretic properties



Cue Identification

• Secondary level cue-identification:

• Sparse data problem on the token level.

• Solution:

• Typing: identifying properties of elementary 
units (e.g. morphemes) on the basis of:

• morphological properties

• syntactic properties



Alternative

• Basic constraints are fundamental and not 
“symptom” related.

• Information Theory (e.g. Entropy)

• Statistical (e.g. Frequency)

• Distributional (e.g. absolute or relative position 
and relation to others)

• Language specific constraints can be induced.



Architecture

• General principles:

• Incremental input with incremental 
grammar induction and optimization

• Minimum revisions via restricted memory 
(short term memory)

• Learning only from previous experience



Fundamental 
Constraints

• Language properties: equilibrium between

• size of grammar

• usability

size usabilitygrammar
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sleeps

sleep

dream

dreams

Data

sleeps P(sleeps)
sleep P(sleep)

dream P(dream)
dreams P(dreams)

Hypothesis 1
size: 38 bytes

sleep P(sleeps) Ptr(-s)
dream P(dream) Ptr(-s)

-s P(-s)

Hypothesis 2
size: 33 bytes



Minimum Description 
Length
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• Evaluation in a constraint satisfaction system:

• Minimum Description Length Principle: Minimize 
the description length of the language model, 
including the size of the described data. 
(Occam's razor) (Gruenwald et al. 2005)

• Trade off goodness-of-fit on the observed data 
with the complexity or richness of the data.



Minimum Description 
Length
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• Let H1, H2 ... Hn be a list of candidate models. 
The best hypothesis H ∈ H1 ∪ H2 ∪ ... Hn to 
explain the data D is the one which minimizes 
the sum L(H)+L(D|H).

• L(H) is the length, in bits, of the description of the 
hypothesis; and

• L(D|H) is the length, in bits, of the description of the 
data when encoded with the help of the hypothesis.



Architecture

• General processes:

• Generation of hypotheses for a given input

• Selection of appropriate hypotheses

• Induction of grammar rules/constraints 
and their ranking



General Induction 
Architecture

EVALGEN

Linguistic
Knowledge

Input
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Architecture

• Hypothesis generation:

• Random or complete

• Statistical:

• Transitional probabilities (Harris, 1955)

• EM-based (Brent, et al.)

• Alignment based (ABL) (van Zaanen, 2001)



Architecture

• Hypothesis generation: ABL

• Substitutability and Complementarity

• Given two words (one known word and one 
unknown input word), the edges of matching 
substrings mark morphological boundaries.

• Advantage:

• Learning from previous knowledge.



Evaluator

• Weighted voting constraints:

• Minimum Description Length

• Mutual Information (point-wise, average, 
left- and right)

• Relative Entropy

• Surface constraints: morph. length, 
frequency, segment count, etc.



Architecture

• Grammar size

• Minimum Description Length Principle 
(MDL)

• From n grammars that describe the 
same data, chose the grammar with the 
smallest size (e.g. number of symbols, 
length of terminals)



Architecture

• Grammar size

• Relative Entropy

• From a set of hypotheses about the 
structure of an input i, add the 
hypothesis h to the set of grammar 
rules/hypotheses that results in lowest 
divergence from the original grammar.



Architecture

• Grammar size

• Relative Entropy

• We calculate RE as a variant of the 
Kullback-Leibler Divergence

• Given grammars G1 and G2, choose the 
grammar that has the smallest 
divergence from the initial grammar G0.



Architecture
• Grammar size - Relative Entropy

• Kullback-Leibler Divergence
∑

x∈X

P (x)lg
P (x)

Q(x)

∑

x∈X

P (x)lg
1

P (x)



Architecture

• Hypothesis evaluation: Mutual Information

• Pairwise summation of left MI of x and right 
MI of y.

• Accepting morpheme boundaries at local 
MI-maxima.

∑

y∈{<xY >}

p(< xy > |x)lg
p(< xy >)

p(x)p(y)



Architecture

• Mutual Information

• symmetric: MI(<xy>) = MI(<yx>)

• frequency sensitive

• Relative Entropy

• asymmetric: given <xy>, RE(y) ≠ RE(x)



Architecture

• Usability related criteria:

• Frequency of Morpheme Boundaries

• Number of Morpheme Boundaries

• Length of Morphemes



Architecture

• Restricted grammar optimization:

• Small short-term memory window (e.g. 
100 utterances).

• Optimization of the sub-grammar within 
the window.

• Significance of the generated rules: 
elimination of rules with low significance 
scores.



Architecture

• Voting-based architecture:

• Every component votes for a hypothesis 
(= grammar)

• The  hypotheses with the highest votes 
win.



Architecture

• Weighting of constraints:

• Every voter is weighted (0-1)

• Compatible to constraint ranking



Architecture

• Weighting of constraints:

• Means of self-supervision:

• Online adjustment of the weights of the 
constraints that produce hypotheses 
that do not enter grammar.

• Partially equivalent to Error-driven 
Constraint Demotion



ABUGI
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Hypothesis
Generation

Alignment Based

Grammar

Short-term
memory

Split
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Minimum Description Length
Mutual Information
Relative Entropy



Architecture

• Input: Utterances with word boundaries

• The cars are ugly.

• Output:

• Signature for every morpheme merged 
with previously generated signatures:

• #car$ = [NONE, s$]

• s$ = [#car$, ...]



Morphology Induction

• Evaluation Gold-standard:

• manual segmentation of:

• CHILDES Peter corpus

• 10% Brown corpus

• CELEX



Morphology Induction

• Evaluation:

• Online incremental self-evaluation

• Parallel input: raw & bracketed words

• Reason:

• Evaluation of grammar development

• Visualization of saturation curve



Morphology Induction

• Evaluation:

• Offline incremental human evaluation

• At every increment of grammar size s, 
dump the grammar.

• Human annotation of paradigms and 
segmentation.



Morphology Induction

• Evaluation:

• Corpora:

• English: CHILDES, Brown corpus, Penn 
Treebank

• Latin: Caesar “De Bello Gallico”

• Japanese: “Genji Monogatari”



Morphology Induction

• Results:  F =  (beta2 + 1)*precsion*recall  / ((beta2*precision) + recall)
Progression of Average Score of Windows

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

A
v
e
r
a
g

e
 S

c
o

r
e
 i
n

 W
in

d
o

w



Morphology Induction

• Brown & CHILDES Peter corpus (English):

• Precision: 100%

• Recall: ca. 80%

• Latin:

• Precision: 99%

• Recall: 35%



Morphology Induction

• No supervision wrt. notions of stem and 
affix:

• Notions of stem or affix are derivable via 
clustering on the basis of the signatures.

• s# = [$drink#, $sleep#, $dream#, ...]

• $smoke# = [NONE, s#, ed#, ...]



Morphology Induction

• Acquisition Order (English):

• Inflectional Morphology first

• Derivational Morphology second

• Prefixes and Infixes last

• Corresponds to observations from language 
acquisition

• Corresponds to the frequency distribution 
of these morpheme types


